
Two-dimensional magnetopolarons with squeezed Landau states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 427

(http://iopscience.iop.org/0953-8984/9/2/011)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 06:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/2
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 427–437. Printed in the UK PII: S0953-8984(97)76615-3

Two-dimensional magnetopolarons with squeezed Landau
states

B S Kandemir and T Altanhan
Ankara University, Faculty of Sciences, Department of Physics, 06100 Tandoğan, Ankara,
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Abstract. An attempt has been made to calculate the ground-state and first-excited-state
energies of two-dimensional large magnetopolarons by using recently introduced squeezed
Landau states. These states are obtained through the application of the two-mode coupled
squeezed operator to the coherent states, and then a variational method is used to eliminate
squeezing parameters. In the framework of this approach we obtain the ground- and first-
excited-state energies of two-dimensional magnetopolarons.

1. Introduction

The coherent and squeezed states which play an important role in quantum optics [1] have
now been found in condensed-matter physics. These states are interesting since, considering
a quantum system, it is possible to make the uncertainties equal and minimal in the coherent
states, and furthermore in the case of squeezed states uncertainty in one variance can be
compressed at the expense of its complementary variance for two non-commuting operators,
while keeping their product at the minimum value. These states are found to be particularly
useful in obtaining lower quantum noise than the zero-point fluctuations of the coherent
states of boson systems. This has been achieved for photons [1] and squeezed chaotic states
[2], and its experimental realization for phonons has been proposed in recent works [3, 4].
As to the theoretical investigation, the squeezed states have been successfully applied to the
calculation of various ground-state energies, and give more stable results than conventional
considerations [5–7].

Another interesting problem in condensed-matter physics is the study of a particle in an
external magnetic field, via which many physical concepts can be tested. In the presence
of the external magnetic field, the energy of an electron splits into Landau levels. Starting
from the first Landau level, i.e. the ground state, it is possible to form coherent states of an
electron [8, 9]. Recently these coherent Landau states have been used to construct squeezed
states, which show the same compression in uncertainties as arises in the case of quantum
optics [10].

An electron moving slowly in a polar crystal polarizes the lattice, and this polarization
in turn acts back on the electron to form a quasiparticle, called a polaron. Although the
polaron concept is a well studied subject, an electron moving in a uniform magnetic field,
which is known as the magnetopolaron problem, is still of current interest. In particular, the
study of two-dimensional (2D) magnetopolarons, which is motivated by pioneering work
of Das Sarma [11], Larsen [12], and Peeters and Devreese [13], has received increasing
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theoretical and experimental attention in recent years, because of the 2D electronic systems
in semiconductor heterostructures [14, 15]. Despite the existence of detailed calculations
for the 2D magnetopolaron effects, there is no study which combines the magnetopolaron
and squeezed states together in an investigation.

In the present work, our aim is to reconsider 2D magnetopolarons in view of the recently
introduced new squeezed Landau states [10]. In section 2 we introduce 2D magnetopolarons
with some quantities of interest, such as relevant operators in the presence of a magnetic
field. After giving a summary of coherent and squeezed Landau states in section 3, we
calculate the energy functional by using coherent phonons. In the last section we discuss
our results and compare the approach introduced in the previous sections with different
theories.

2. Magnetopolarons in 2D

In the presence of a homogeneous magnetic field directed normal to the planez = 0, the
Hamiltonian of a 2D electron–phonon system is described by the Fröhlich Hamiltonian
choosing the vector potential giving rise to a magnetic fieldB in the symmetric gauge,
i.e. A ≡ (B/2)(−y, x, 0):

H2D = H0 + HP + HEP (1)

where

H0 = p2
⊥

2µ
+ 1

2
µ

(
ωc

2

)2

r2
⊥ − 1

2
ωcLz (2)

HP =
∑
k⊥

h̄ω0a
†
k⊥ak⊥ (3)

HEP =
∑
k⊥

[
Vk⊥ak⊥ exp(ik⊥ · r⊥) + HC

]
. (4)

Here p⊥ ≡ (px, py) and r⊥ ≡ (x, y) are the momentum and the position of an electron
confined to the planez = 0. Lz = xpy − ypx is the z-component of the orbital angular
momentum operator andωc = eB/µ is the cyclotron resonance frequency.a

†
k⊥(ak⊥) is the

phonon creation (annihilation) operator with wave vectork⊥ ≡ (kx, ky). In (4), Vk⊥ is the
2D electron–phonon interaction amplitude, and is given by [16]∣∣Vk⊥

∣∣2 = α
2π

V k⊥
(h̄ω0)

2

(
h̄

2µω0

)1/2

(5)

whereV is the surface area of the system, andα andω0 are respectively the electron–phonon
coupling constant and the LO-phonon frequency, assumed to be dispersionless.

For the electronic parts of the Hamiltonian (1), the new dimensionless variables(z, z̄),
(pz, pz̄) and the momentum-like operators(πz, πz̄), (ωz̄, ωz) can be introduced in order to
work in the energy basis of a 2D quantum oscillator [10]:

πz = pz + 1

2
iz̄ πz̄ = pz̄ − 1

2
iz (6)

and

ωz̄ = pz̄ + 1

2
iz ωz = pz − 1

2
iz̄ (7)

with

z = (µωc/2h̄)1/2(x + iy) pz = (2µh̄ωc)
−1/2(px − ipy) (8)
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where the bar denotes the complex conjugate. If we use these types of two decoupled sets
of annihilation and creation operators, as in (6) and (7), for the energy(πz, πz̄) and for the
momentum(ωz̄, ωz) which satisfy the following commutation rules:[

πz,z̄, ωz,z̄

] = 0 [πz̄, πz] = [ωz, ωz̄] = 1 (9)

thenH0, Lz andHEP become

H0 =
(

πzπz̄ + 1

2

)
h̄ωc Lz = h̄(πzπz̄ − ωz̄ωz) (10)

and

HEP =
∑
k⊥

(Vk⊥ak⊥LπMω + HC) (11)

whereLπ andMω are the exponential operator forms of the plane-wave part of (4) which
is exp(ik⊥ · r⊥), and can be written as

exp(ik⊥ · r⊥) = LπMω

with

Lπ = exp(Kπz − K̄πz̄)

Mω = exp(K̄ωz̄ − Kωz).
(12)

Here x and y have been expressed in terms of two decoupled sets of annihilation and
creation operators defined in (6) and (7), such as

x = iγ [(πz̄ − ωz̄) − (πz − ωz)]

y = γ [(πz̄ − ωz̄) + (πz − ωz)]
(13)

in which K = γ (kx + iky), andγ = (h̄/2µωc)
1/2 is the dimension of length. Taking the

normalized ground state as800 = |00〉 for a 2D quantum oscillator in the form

800(zz̄) = π−1/2 exp(−zz̄/2) (14)

the eigenfunctions ofπzπz̄ andωz̄ωz can be generated in the usual way, that is, by operating
with πz andωz̄ on (14) repeatedly. One thus obtains the state vectors which are normalized
to unity:

|n1n2〉 = (n1!n2!)−1/2πn1
z ω

n2
z̄ |00〉 . (15)

3. Coherent and squeezed Landau states

3.1. Coherent Landau states

It is necessary to review some properties of coherent Landau states (CLS) which are in fact
the eigenstates of the annihilation operatorsπz̄ andωz with eigenvaluesp andw as follows:

πz̄ |pw〉 = p |pw〉 (16)

ωz |pw〉 = w̄ |pw〉 . (17)

The CLS |pw〉 can also be defined as the simultaneous eigenstates of two commuting
non-Hermitian operators which are created by the unitary displacement operators

D(p) = exp(p πz − p̄ πz̄) (18)

D(w) = exp(w̄ωz̄ − wωz) (19)
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acting on the ground state|00〉 to yield

|pw〉 = D(p)D(w) |00〉 = exp

[
−1

2
(|p|2 + |w|2)

] ∑
n1,n2

pn1w̄n2

√
n1!n2!

|n1n2〉 . (20)

These are constructed out of states|n1n2〉, wherep, w run separately over the entire complex
plane. The CLS are normalized sinceD(p) andD(w) are unitary, and form an important
identity or resolution of unity:

1

π2

∫ ∫
d2p d2w |pw〉〈pw| =

∑
n1,n2

|n1n2〉〈n1n2| = I (21)

where d2p = d Re(p) d Im(p) is the differential element of the area in thep-complex plane
and similarly d2w is that in thew-complex plane. The CLS are not orthogonal since the
scalar product of two different states which are eigenstates of non-Hermitian operators given
by (16) and (17) satisfies the overlap relation

〈p1w1|p2w2〉 = exp

[
−1

2
|p01 − p02|2 − 1

2
|w01 − w02|2

+ i |p02| |p01| sin(812 − 811) − i |w02| |w01| sin(822 − 821)

]
(22)

where pi = |p0i | exp(i81i ) and wi = |w0i | exp(i82i ) are used. In fact, they are over-
complete as a result of the non-orthogonality. Hence the CLS must contain subsets which
are complete. It is possible to choose such a subset, as first pointed out by von Neumann
for the simultaneous measurements of both the coordinate and momentum in phase space.
In the phase space this set forms a lattice with a unit-cell area ofh. In the case of coherent
states, the von Neumann set is chosen as a square lattice with the unit-cell area ofπ .
This set is still overcomplete by just one element, but removing one element brings back
completeness. For Landau levels a more general subset of coherent states is introduced
by Dana [17]. The CLS are also minimum uncertainty states (MUS), i.e. the uncertainty
relations(1x)CLS(1px)CLS = (1y)CLS(1py)CLS = 1/2 are satisfied. Furthermore, the
energy and the angular momentum distribution in the state|pw〉 is a Poisson distribution:

Pn1n2 = |〈pw|n1n2〉|2 = exp
[−(|p|2 + |w|2)] |p|2n1|w|2n2

n1!n2!
. (23)

In the CLS representation the expectation values for theH0 and Lz given by (10) can be
easily found, by using (18) and (19), as

Ep =
(

|p|2 + 1

2

)
h̄ωc Lz = h̄(|p|2 − |w|2) (24)

wherep andw take all of the values over the whole of the complex planes as pointed out
before.

3.2. Squeezed Landau states

In order to obtain the squeezed Landau states (SLS), it is necessary to consider the coupled
squeeze operator which is defined by [10]

D(q) = exp

(
1

2
q2πzωz̄ − 1

2
q̄2πz̄ωz

)
(25)

whereq2 = r exp(2iϕ). Thus, the SLS may be written as

|pw, q〉 = D(q)D(p)D(w)|00〉 (26)
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where the operatorsD(p) andD(w) displace and the operatorD(q) squeezes the ground
state, i.e.D(q) squeezes the CLS defined by (20). Using (25), one obtains the transformed
forms of operatorsπz̄ andωz as

πz̄q = D−1(q)πz̄D(q) = πz̄ cosh

(
1

2
r

)
+ exp(2iϕ)ωz̄ sinh

(
1

2
r

)
(27)

ωzq = D−1(q)ωzD(q) = ωz cosh

(
1

2
r

)
+ exp(2iϕ)πz sinh

(
1

2
r

)
. (28)

In order to obtain the uncertainties in(x, px) and (y, py), these are firstly expressed
in terms of operators (6) and (7), as was done before for the calculation of uncertainties
in associated coherent observables, and then the squeezed expectation values of the related
operators can be obtained by means of (27) and (28). As a result of the calculation of these
uncertainties, it can be easily seen that

(1x)2
SLS(1px)

2
SLS = (1y)2

SLS(1py)
2
SLS = 1

4

[
cosh2(r) − sinh2(r) cos2(2ϕ)

]
. (29)

In addition, these uncertainties are MUS forϕ = kπ/2, with integerk. This means that one
squeezes either in(x, px) or in (y, py) as follows:

(1x)2
SLS = (1py)

2
SLS = 1

2

[
cosh(r) − (−1)k sinh(r)

]
(1y)2

SLS = (1px)
2
SLS = 1

2

[
cosh(r) + (−1)k sinh(r)

]
and by choosingk as even or odd respectively:

(1x)2
SLS = (1py)

2
SLS = 1

2
exp(±r)

(1y)2
SLS = (1px)

2
SLS = 1

2
exp(∓r).

In order to find the squeezed expectation values for the energy and the angular momentum
of the electronic parts of (1), one has to write the transformed forms of (27) and (28) in
terms of (18) and (19), which simply correspond to displacements in(πz,πz̄) and (ωz̄,ωz)

by the amounts(p̄,p) and(w, w̄). After forming H0 andLz with these new operators, their
expectation values can be calculated from the ground state, and it is found that

Epw(r, ϕ) =
[(

|p|2 + 1

2

)
cosh2(r/2) +

(
|w|2 + 1

2

)
sinh2(r/2)

+ 1

2
(p̄w exp(2iϕ) + pw̄ exp(−2iϕ)) sinh(r)

]
h̄ωc (30)

and

Lz = h̄(|p|2 − |w|2). (31)

Here it appears thatLz remains invariant under the squeezed transformation from its form
in (24).

3.3. Coherent phonons

In (4), the electron–phonon interaction Hamiltonian is not in a diagonal form in phonon
coordinates, but can be diagonalized by applying a unitary displacement operator which is
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also coherent inak, and gives the phonon state as|f 〉 = D(f ) |0〉PH with

D(f ) = exp

{∑
k⊥

[
a

†
k⊥fk⊥ − akf

∗
k⊥

]}
. (32)

This transforms the phonon operators as

D−1(f )ak⊥D(f ) = ak⊥ + fk⊥ (33)

D−1(f )a
†
k⊥D(f ) = a

†
k⊥ + f ∗

k⊥ (34)

and it is known as the Lee–Low–Pines (LLP) transformation [18]. Herefk⊥ will be used
as a variational parameter to be determined by minimizing the total energy of the electron–
phonon system. Then the state vector of an electron interacting with LO phonons in 2D
can be taken as

|pw, q; f 〉 = D(f )|0〉PH ⊗ D(q)D(p)D(w)|00〉. (35)

The transformed forms of the Hamiltonian of the free-phonon field plus the electron–phonon
interaction have the form

D−1(f )(HP + HEP )D(f ) =
∑
k⊥

[
h̄ω0

∣∣fk⊥

∣∣2 + (Vk⊥fk⊥LπMω + HC)
]

+
∑
k⊥

{
h̄ω0a

†
k⊥ak⊥ + [

ak⊥(f ∗
k⊥ + Vk⊥LπMω) + HC

]}
(36)

where the normal ordering of operators has been used. We can write down the total energy
functional of a 2D polaron:

E2D

[
pw, q; f

] = 〈pw, q; f | H |pw, q; f 〉
and then separately calculate the electronic partEpw(r, ϕ) and the part containing phonons
and the interaction with phononsEα(r, ϕ):

E2D

[
pw, q; f

] = Epw(r, ϕ) + Eα(r, ϕ). (37)

In the last equation,Epw(r, ϕ) andEα(r, ϕ) are given by

Epw(r, ϕ) =
[(

|p|2 + 1

2

)
cosh2(r/2) +

(
|w|2 + 1

2

)
sinh2(r/2)

+ 1

2
(p̄w exp(2iϕ) + pw̄ exp(−2iϕ)) sinh(r)

]
h̄ωc (38)

Eα(r, ϕ) =
∑
k⊥

[
h̄ω0

∣∣fk⊥

∣∣2
]

+
∑
k⊥

[
Vk⊥fk⊥ 〈00| L̄πqM̄ωq |00〉 + V ∗

k⊥f ∗
k⊥ 〈00| L̄−1

πqM̄−1
ωq |00〉] (39)

In (39), L̄πq andM̄ωq are respectively the transformed forms of the exponential operators
(12) under the unitary transformationsD(q), D(p) andD(w) and are defined by

L̄πqM̄ωq = D−1(p)D−1(w)LπqMωqD(p)D(w)

= D−1(p)D−1(w) exp(Kπzq − K̄πz̄q) exp(w̄ωz̄q − wωzq)D(p)D(w)

= exp
{− |K|2 [cosh(r) − sinh(r) cos(2ϕ)]

}
× exp

{+(Kp̄ + K̄w)
[
cosh(r/2) − sinh(r/2) exp(+2iϕ)

]}
× exp

{−(K̄p + Kw̄)
[
cosh(r/2) − sinh(r/2) exp(−2iϕ)

]}
× exp(Krϕπz) exp(−K̄rϕπz̄) exp(K̄ ′

rϕωz̄) exp(−K ′
rϕωz) (40)
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where

Krϕ = K
[
cosh(r/2) − sinh(r/2) exp(2iϕ)

]
K

′
rϕ = K̄

[
cosh(r/2) − sinh(r/2) exp(2iϕ)

]
and the operators are written in the normal ordered forms by using the Baker, Campbell
and Hausdorff (BCH) formula.

By minimizing (37) with respect tof k⊥ , r andϕ, we obtain respectively the relevant
parameters in the following coupled equations:

f
k⊥ = − Vk⊥

h̄ω0
〈00| L̄πqM̄ωq |00〉 (41)[

(|p|2 + |w|2 + 1) sinh(r) + (p̄w exp(2iϕ) + pw̄ exp(−2iϕ)) cosh(r)
]
h̄ωc

+ 4

h̄ω0

∑
k⊥

∣∣Vk⊥

∣∣2 |K|2 g′(r, ϕ) exp(−2 |K|2 g(r, ϕ)) = 0 (42)

i(p̄w exp(2iϕ) − pw̄ exp(−2iϕ)) sinh(r)h̄ωc

+ 4

h̄ω0

∑
k⊥

∣∣Vk⊥

∣∣2 |K|2 sinh(r) sin(2ϕ) exp(−2 |K|2 g(r, ϕ)) = 0 (43)

whereg ≡ g(r, ϕ) = [cosh(r) − sinh(r) cos(2ϕ)] andg′ is the derivative ofg with respect
to r. The last two equations can be written in a simpler form by changing sums overk⊥
to integrals, and using the expression forVk⊥ given in (5) and K defined above. After
integration these are expressed as[
(|p|2 + |w|2 + 1) sinh(r) + (p̄w exp(2iϕ) + pw̄ exp(−2iϕ)) cosh(r)

]
�̄

+ α�̄1/2

√
π

23
g′(r, ϕ)g−3/2(r, ϕ) = 0 (44)

i(p̄w exp(2iϕ) − pw̄ exp(−2iϕ)) sinh(r)�̄ + α�̄1/2

√
π

23
sinh(r) sin(2ϕ)g−3/2(r, ϕ) = 0

(45)

where�̄ = ωc/ω0.
Since the last two coupled equations are complicated dependencies onα, �̄, r andϕ, it

seems impossible to solve them; however, one can obtain the following equations by setting
α = 0 as a first approximation. In (45), by takingp = p0 exp(i81) andw = w0 exp(i82)

we obtain the squeezing angle that satisfies the MUS condition:

ϕ = 1

2
(81 − 82) (46)

and

1

cosh(r)
=

[
(p2

0 + w2
0 + 1)2 − 4p2

0w
2
0

]1/2

(p2
0 + w2

0 + 1)
(47)

or equivalently

2p0w0 = −(p2
0 + w2

0 + 1) tanh(r). (48)

Using (41) in (39) and rewriting (38) in the dimensionless form we find

Ēpw(r, ϕ) =
[(

|p|2 + 1

2

)
cosh2(r/2) +

(
|w|2 + 1

2

)
sinh2(r/2)
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+ 1

2
(p̄w exp(2iϕ) + pw̄ exp(−2iϕ)) sinh(r)

]
�̄ (49)

Ēα(r, ϕ) = − 1

(h̄ω0)2

∑
k⊥

∣∣Vk⊥

∣∣2 ∣∣〈00| L̄πqM̄ωq |00〉∣∣2

= − 1

(h̄ω0)2

∑
k⊥

∣∣Vk⊥

∣∣2
exp(−2 |K|2 k2

⊥g(r, ϕ))

= − α
1

2

√
π

2
�̄1/2g−1/2(r, ϕ) (50)

whereĒpw(r, ϕ) = Epw(r, ϕ)/h̄ω0 and Ēα(r, ϕ) = Eα(r, ϕ)/h̄ω0.
Substituting the expressions(46) and (47) into (49) and (50), the parts of the total

energy can be found in terms ofp, w:

Ēp0w0 =
{

1

2
(p2

0 − w2
0) + 1

2

[
(1 + p2

0 + w2
0)

2 − 4p2
0w

2
0

]1/2
}

�̄ (51)

and

Ēα(p0, w0) = −α
1

2

√
π

2
�̄1/2

[
(1 + p2

0 + w2
0)

2 − 4p2
0w

2
0

]1/4

(1 + p2
0 + w2

0)
1/2

×
[

1 + 2p0w0

(1 + p2
0 + w2

0)
cos(81 − 82)

]−1/2

. (52)

It should be noted that (51) gives the Landau ground-state energy when we takep0 = 0,
that is, if the coherence property vanishes. In order to make a comparison with other
work one may transform the continuous(p0, w0) to discrete values as discussed above in
the completeness argument. Alternatively one can project the coherent states on the Fock
space.

If we multiply both (51) and(52) by the related Poisson distribution(23) and integrate
over p andw, we obtain the following equations:

Ēn1n2(�̄) =
{

1

2
(n1 − n2) + 2

n1!n2!

∫ ∞

0

∫ ∞

0
dp0 dw0 p

2n1+1
0 w

2n2+1
0 exp

[−(p2
0 + w2

0)
]

× [
(1 + p2

0 + w2
0)

2 − 4p2
0w

2
0

]1/2
}
�̄ (53)

and

Ēn1n2(α, �̄) = −α
1

2

√
π

2
�̄1/2 1

π2

1

n1!n2!

∫ ∞

0

∫ ∞

0
dp0 dw0 p

2n1+1
0 w

2n2+1
0

× exp
[−(p2

0 + w2
0)

] [
(1 + p2

0 + w2
0)

2 − 4p2
0w

2
0

]1/4

(1 + p2
0 + w2

0)
1/2

×
∫ 2π

0

∫ 2π

0
d81 d82

[
1 + 2p0w0

(1 + p2
0 + w2

0)
cos(81 − 82)

]−1/2

. (54)

It should be mentioned that, on takingn1 = n2 = 0 in (53), one obtains not the
ground-state energy, but an energy level shifted down due to squeezing effects, which will
be identified as the first-excited-state energy of magnetopolarons. In order to perform the
integration over the angles in (53), it is useful to transform them by choosing the variables
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81 and82 as

81 = (21 + 22)/2

82 = (22 − 21)/2.
(55)

Thus the integral takes the form

I (k) =
∫ 2π

0

∫ 2π

0
d81 d82 [1 + k2 cos(81 − 82)]

−1/2

= 2π

∫ 2π

0
d22 [1 + k2 cos(22)]

−1/2 (56)

wherek = 2p0w0/(1+p2
0 +w2

0). The last equation can be expressed in terms of an elliptic
function of the second kind:

I (k) = 2π

{
2
√

k4

[
E

[
2k2/(k2 − 1)

]
k2

√
1 − k2

+ E
[
2k2/(k2 + 1)

]
k2

√
1 + k2

]}
. (57)

Using this last integral, equations (53) and (54) can be calculated numerically by giving
integer values ton1 andn2.

Figure 1. The ground-state energy of a 2D magnetopolaron in units of ¯hω0 as a function of
�̄ = ωc/ω0. The fine curves show the numerical results of[23] and the bold curves are obtained
from equation (58), forα = 0.1, 1 and 4 respectively.

4. Results and discussion

In our approach we have used standard coherent states that arise from the ground state [19].
Let us first consider pure Landau states—that is, ignore electron–phonon interaction. The
expectation value ofH0 is given by (24), in which there exists only|p|2 of the coherent
parameter. If the coherence vanishes we obtain the ground-state energy—that is, ¯hωc/2. If
we now integrate (24) after multiplying byP00 of (23), we obtain(1 + 1/2)h̄ωc, i.e. the
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second Landau level. In fact, the other coherent states coincide with the normal Landau
levels, as one unit shifted up. If we now consider the squeezed Landau energy given by
(51), we notice that it gives the ground state upon takingp0 = 0. This is an expected result,
since one cannot shift the ground-state energy. If we now integrate (51) after multiplying
by P00, we obtain 1.230 73h̄ωc, which is shifted down from the coherent Landau level
1.5h̄ωc. In the framework of our approach we will take this as the first excited state which
we compare with other results.

Our approach makes use of the LLP method and the variational principle; it is therefore
valid in weak- and intermediate-coupling regions and for cyclotron frequencies higher than
ω0, which are reached at high magnetic fields [20]. The ground-state energy of the 2D
electron–phonon system which follows from (51) and (52) can be obtained by takingp0 = 0
for any value ofw0 in a unique way as

Ē0 = 1

2
�̄ − α

2

√
π

2
�̄1/2. (58)

This result agrees well with those from the path integral method obtained by Larsen
[21] and the variational method [22] in high magnetic fields. Figure 1 shows the variation
of this energy as a function of̄� for various values ofα. It should be mentioned that the
lowest ground-state energy obtained so far is due to Wuet al [23], and their numerical
results are also plotted in figure 1.

As far as the ground state is concerned, our approach agrees fairly well with the best
available result only for low values ofα—for example, whenα 6 1. As α increases our
result seems to be inadequate. This is due to the fact that the coherence and consequently
the squeezing effects have to be removed in order to obtain the ground state.

Figure 2. The first-excited-state energy of a 2D magnetopolaron in units of ¯hω0 as a function
of �̄ = ωc/ω0. The fine curve shows the unperturbed second Landau leveln = 1 and the bold
curves are obtained from the equation (59), forα = 0.1, 1 and 4 respectively.

The first-excited-state energy of the 2D electron–phonon system in our approach can
be obtained from (53) and (54) by takingn1 = 0 andn2 = 0, as discussed above. The
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corresponding energy expression is

Ē1 = 1.230 73�̄ − 0.768 164α

√
2

π
�̄1/2. (59)

Note that the second Landau state is lowered by the squeezing effects. This energy is plotted
against�̄ for various values ofα in figure 2. Although there is a similar calculation for 3D
magnetopolarons within the same intermediate region [20], there is no work available in 2D
to compare our result with. However, our result justifies the assumption that the polaron
effects are considerably enhanced in 2D systems.

In this paper, we have presented an approach which makes use of coherent and squeezed
Landau states. We have identified the ground and first excited states in the framework of this
approach. As an application for these new states we have considered 2D magnetopolarons.
We expect our model to be useful in similar problems involving Landau levels.
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